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1 .

Introduction

A finite-element program was developed for an investigation of the response of
rigid pavement to changing environmental conditions and to static loading. The finite-ele-
ment program has several uncommon features which make it more usefui and more flexi-
ble than commercially available software for analyzing pavement. Concrete and soil
elements are ordinary twenty-node, quadratic, isoparametric hexahedra, but the program
uses special thin interface elements to model the behavior of the top layer of soil under the
slab. Concrete joints also are reprgsented by interface elements. The interfaces behave‘ as
ordinary elementé in compression, but in tension they lose stiffness to allow joints to openA
and slabs to separate from soil.

A three-node isoparametric beam element is used for the joint dowels and ties.
The beam element includes both bending and shéar deformation to model accurately the -
deflections of the dowels where they span narrow joints. Longitudinal stiffness is consid-
ered for the ties but not for the dowels, which are usually lubricated to prevent develop-
ment of axial forces. |

The program solves nonlinear system_s‘by an iterative secaﬁt method. Stresses,
strains, and diSpIaceinents are calculated at each iteration and are used to cémpute stiﬂ’-'

" ness for the next iteration.. The algorithm evaluates stresses resulting from temperature



changes and body forces as well as distributed and concentrated loads. For traffic loads,
the displacements, stresses, and strains can be referenced to the results of the first itera-
tion, which includes only stresses producéd by the weight of the pavement, for direct com-
parison with field data. If, on the other hand, thermal stresses are sought, the reference is
obtained by running the program with the pavement weight plus the temperature condi-

tions approximately equivalent to those present in the experimental reference state.
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The Soil and Concrete Elements

‘ Soil and concrete are modeled with a twenty-node, quadfatic, isoparametric, hexa-
hedral element [2,3]. This element, with s1xty degrees of freedom, provides better accu-
racy than the usual eight-node linear element, which has 24 degrees of freedom. Although |
each element has more degrees of freedorh,'a mesh of twenty-node elements can actually
have fewer degrees of freedom than the equivalent mesh of eight-node elements. This is
becauee fewer twenty-node elements are required to give good results. Their quadratic
interpolation functions permit them to perform well with high aspect ratios, with curved
surfaces, and with coarse meshes. Of coufse when a mesh is refined to examine local
stresses or dlsplacements in the reglon ofa dlscontmmty, such as a crack or a dowel bar
the twenty-node elements are far supenor to their exght-node counterparts , '

Presently, linear elastlc matenal properues are assumed for both 8011 and concrete
but the program could be amended easily to use nonlinear soil and concrete material mod-
els. Similarly, the capability to model crack formation and growth could be added to the
pro grzim with little difficulty. But for now, it eeems that the general behavior of both con-

crete and soil is represented with acceptable accuracy by linear elastic material models.



2.1 Formulation

The local coordinate system and nodal numbering scheme for the twenty-node ele-

ment are shown in Figure 2-1. Because the element is isoparametric, the shape functions

x

Figure 2-1. Twenty-Node Hexahedral Element.

used for intetpdlating geomeuic coordinates are the same as those used for interpolating
displacements. The global coordinates éorresponding to any point in the local coordinate

system are interpolated from the nodal coordinates by

20 B 20 20 :
x=2N,-x,- ' y'—'ZN,y, Z=ZN,'Z,' (2'1)
iel

i=l ’ R

- and the displacements are interpolated from their nodal values by




20 oy 26 | | ‘
u=Yy Ny v=Y Ny, w=Y Nw, 2-2)
i=1 i=l : i=l

The interpolating polynomials are quadratic functions of the element local coordinates:

N, =%(1+§§,-)(1+ﬂ11,-)(1+§§i )(fé. +nn,; +§§i +2) i=1,2,..38

N, =1-1")A+&)+8E) i=9, 11, 17, 19 23
N, =3(1-5HA+&)1+nn,) A i=10, 12, 18, 20
N, =51-E)A+m)A+8) i=13, 14, 15, 16

In these shape functions, &;, 17, and {; are the coordinates of the nodes in the local coordi-

nate system, as given in Table 2-1.

Table 2-1. Local Coordinates of Nodes for Twenty-Node Element.

i S |.m | &) i & | &
1 -1 1] -1 1| 1] o] 1
2 -1 1 al 1 -1 -1 0
31 -1 1 1] 13 o] -1 -1
4] -1 -1 1 14 0 1 -1
5 1| ] - 15 of 1 1
6 1 1] - 16 ol -1 1
7 1 1 1 17 1 of -1
8 1 1| 1§ 18 1 1 0
91 -1 o] 1] 19 1 0 1
10 -1 1 ol 22 1l 4 0l

Strains € are interpoiated Within the element from the nodal displaccmeﬁts q with

derivatives of the shape functions.

e=Bq=[B, B, - Bylq . (29



The derivative submatrices have the form

aN,
v
cy

N,
[ 0z ox

oN,

e .0 0
oN,

0 — 0
oy

0 0

N, N,

dy ox

o M

N

(2-5)

These derivatives are taken with respect to the global x—y—z coordinate system, but the

interpolation polyndmials are functions of the local x-h~z coordinates. The coordinate

transformation is accomplished by using the following relationships between the local and

global derivatives of the interpolation functions,

oN; N, 9%
o I o
N, _oN, 2%
d & o
N, _ N, 3
&% & &

the Jacobian matrix

NN, o
& on o
N, _ N, o
d o
N, _ N, o
& o &

N, _av, 3
ox df ox
N, _av, o
» X
a,_ o, 3
& o &

where the derivatives of one coordinate system with respect to the other are obtained from



(& & ]
d & ok
& & &
J=|— =— =] 2-7)
{on o an ‘
& H &
(9 I I
and the terms of the Jacobian matrix are evalu;clted numerically by
& N, ¥y _yN; % _y N,
- - %23
ax &N, dy &N, &N,
—~ N 2 =V i, —=)Y —igz 2-8
n Eam™ an Eam” o &wms Y
H_GN  y e x_$N
3C i=l 3C ' ag i=l 3C ' ag i=1 35 .

The six components of the strain vector obtained by Equation 2-4 are three normal strains

and three shear strains:

([ e,
€ —Lu.
20 aN'
& &y
‘ '20 aN. .
£ -t w.
z ,'.,1‘ & H ‘
€=« =< A > ' 2-9)
e, 2m,
7 i=] @ ' i=] & l
y . 20 aNl v+ 20 %’w
& i=1 & l‘ i=] @ '
2 A - A |
KGRV raat’rad



Stresses ¢ are calculated by multiplying the strain vector by the material constitu-

tive matrix E.
o=Ee=EBq 2-10)
’Ihé stress components are three normal stresses and three shear stresses
o={o, o, 0, 7, 7, 7.} 2-11)

For a linear elastic material, the constitutive matrix E is a function of only Young’s modu-

lus E and Poisson’s ratio n. The linear elastic material matrix used in the program is

] o o0
v 1-v v 0 0 0
14 v 1=y 0 0 0
£= (1+v)}(E1—2V) 0 0 0 1--22‘, o 0 @
| 0O 0 0 0 1,'22" 0
6o 0 0o 0 0 1"22"

The program computes stresses at tlie Gaus§ sampling points used to integrate the stiffness
matrix. A 2 X2 X2 integration pattern is used by default; other integration grids can be
specified, up to 10 x 10 x 10.

The element stiffness matrix K relates nodal displacements q and nodal forces p.
Kq=p | | 2-13)

The stiffness matrix can be integrated over the volume of the element in global coordi-

" nates:

K=[B'EBdsdydz o @14
v | |



In practice, however, the stiffness matrix is integrated numerically over the ll‘oc_al_ coordi-

nates of the element. The determinant of the Jacobian |J| is required in the change of vari-

ables.

K=| j’l [ B*EB|J|dtanat |

2.2 Body Forcés

(2-15)

Body forces are applied as eq_uiv'alent nodal forces, which are computed by numer-

ically integrating the material density over thc'volume of the element:

p=[, [ [,N"bly|déana

Here, the interpolating matrix is

N, 0 O!N, 0 0! !Ny 0 0]
| | |
| . t |
N=[0 N, 0/!0 N, 0{--10 Ny 0
1 t I
| I | 7
[0 0 NiO 0 Ni 10 0 Ny
The body force density vector is
. bi
b=1b,
bl

(2-16)

(2-17)

| (2-18)

in which b,, b,, and b, are the components of body force density in the x, y, and z direc-

tions.

2.3 Thermal Stresses

_ Temperature changes produce strain, but no stress, in an element which is free to -

expand and contract, and stress, but no strain, in an element which is completely c_bn'-
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strained. The displacements and stresses resulting from temperature changes can be pro-
duced by équivalent nodal forces, which represent the forces that would be developed in

the completely constrained element. Those equivalent nodal forces are

- Pr =J: J_ll j_ll BTEGOT"” dédndf (2-19)

in which the initial strain vector is

e =@AT{ 1 (2-20)

©C O e

\ /

where a is the coefficient of thermal expansion and AT is the temperature change.

2.4 Applications

The twenty-node element is used for both concrete and soil. Its geometry is
~ defined by the x, y, and z coordinates of its nodes, and its behavior is defined by its consti-
tutive model and material properties. In the present version of the program, two material
models are available for use with the twenty-node element. The first is the linear elastic
- material model with two properties, E and n. The linear elastic constitutive matrix was
given in Equation 2-12. The second material model for the twenty-node element is the
interface model discussed in Chapter 3. |

The element gives reasonably accurate results in a coarse mesh, and it is useful at
the high aspect ratios encountered in pavement slabs. Moreover, it is very good at model-
ing curved surfaces, such as the surface between a dowel bar and the surrounding con- |

crete. The output data for the element inclilde displacements and forces at the nodes, and
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stresses and strains at the integraﬁon points. The étandard integration patternis 2 X 2 X 2,
but a separate version of the twenty-node element allows up to 10 x 10 x 10 integration
points to be SpeCiﬁe(l_ in applications in which finer resolution is desired. The standard
element with 2 X2 x 2 integr_étion is provided as a separate element in the program so that

its integration routines can be optimized for 2 x 2 X 2 integration.
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3

The Interface Element

When the temperature gradient in a slab is such that the slab attempts tocurl and to
.separate from the soil, the soil provides very little resistance against separation. In this sit-
uation the ordinary linear elastic material ptoperﬁeo' must be modified to prevent the for-
ination of tensile stresses peipendiculaf 0 the plane of the interface. - Also, the friction in
the plane of the interface has to be limited so that the shear stress ¢ developed between the
~slab and the soil is governed by the Mohr—Coulomb criterion, 7 = ¢ + &, tan ¢, where ¢ is
the soil—concrete cohesion, o, is the normal compresswe stress on the interface, and fis |
the interface fncuon angle

The interface element has been developed to model the behav1or at the soﬂ—con-

crete mterface The interface element is an ordmary twenty-node hexahedral element, but
its material properties are manipulated to control the stresses in the mterface ‘The thick-
. ness of the interface element is relatively small compared to its other two dimensions, as
shown in Figure 3-1. It must be thin enough that it models only the actual interface layer
of the soil, but thick enough that its aspect ratio does not cause numencal problems The
thickness of the interface layer under a slab is typically one to three inches. In tests, one-

inch and three-inch elements have given nearly identical results.
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Figure 3-1. Twenty-Node Thin Interface Element.

3.1 Formulation

The basm formulation of the interface element is identical to that presented in
Chapter 2 for the twenty-node hexahedral element The only difference is in the material
matrix E. The interface material properties are determined in _each iteration of the finite-
element solﬁtion according to the stresses from the previous iteration. The material con-

stitutive matrix is a modified form of Equation 2-12,

d+v)-2v) (d+v)X(1-2v) (d+v)(1-2v) 0
" Eyv E,(1-v)  Ev 0 0
1Ta+wva=2v) Q+wv)a-2v) d+v)1-2v)

Eyv Eyv E,(1-v) 0o 0
E=|+V)(1-2v) A+v)(1-2v)' (1+V)(1-2V) B
0 0 0 G, 0 0
0 0 0 0 G 0

i 0 0 0 .0 0 G,]
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in which E_; and G_;, are small numbers just large enough to avoid numerical difficulties
and E, and G, are determined accordmg to the followmg algonthm If the nonnal stress

g, is positive, indicating that the interface 1s in tensmn the normal modulus and the two
in-plane shear moduli are assigned small values, E, = E,, and G, = G, so that the ten-
'sion and shear in the interface will be very small. Otherwise, if o, is negative, the normal
modulus is equal to the linear elastic Young’s modulus, and the in-plane shear moduli are
_ reduced, if necessary, so that the maximum in-pldne shear stress will not exceed

T = c+ 0, tan ¢, as follows:

E,=E

Cromd) o oo (3-2)

\}7’123 +73 , .

Finally, the new E, and G, are compared to the E, and G, from the preceding iter-

G, =

ation to be certam that the moduli are not mcreasmg If one of the moduh is found to have
a value greater than that of the precedmg 1terat10n it is assigned the value that it had i in the
preceding iteration. In this way, the interface is not permitted to become stronger after it
has weakened. |

Figure 3-2 shows the stress—strain curve for the normal direction for the interface
element. The cohesion c is usually set to z'ero.; for both concrete—concrete and soil—oon-
crete interfaces. Then, the normal modulus becomes E, = E ;, imxnediately when o;
becomes positive. Of course, the interface behaves as an ordinary linear elastic material in
cOmpfession. Figure 33 shows the in-plane shear stress—strain curves. Figure 3-3(a)
shows that the in-plane shear modulus is G, = G... when the interface is in tension. In
compressnon the shear stress—-stmm curve is s:mllar to that for a linear elastw matena.l

| except that it ﬂattens at :t(c+ o tan¢) asin Flgure 3-3(b)
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Figure 3-2. Normal Stress—Strain Curve for Interface.

(@) 0,>0

t

t ®) ©,<0
ct+o tang 4 1 - '
Gl /.1 c+o tang
’/ Gn=
G g ,,—IJ a+rh
4

Figure 3-3. In-Plane Shear Stress—Strain Curves for Interface.

The material properties are computed individually at each iﬁtegration point in the

interface element. For even greater accuracy, more integration points can be used in the

plane of the intt;rface. The program' defaults to a2 X2 X 2 Gahss intcgratidn, but Gauss or

Newton—Cotes integration can be specified f'or‘ up to 10 x 10 x 10 p'oints; It is usually

desirable to use just two points in the direction normal to the interface because the inter-
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face is felatively thin and therefore has é;;proximétely constant stresses throughout its
thickness. Moreover, using more points requires more computation time. The use of only
one integration point in the normal direction—or in any direction%is to be discouraged:
Although the interface element is thin, it uses the same cjuadratic_ interpo.lation functioné_ in
the normal direction as in the other two directions, so it does require at lea_st two-point

Gauss quadrature to give accurate results.

3.2 Applications
The interface element is used between the pavement slabs and the underlying soil,
“and in the joints between adjacent slabs. The input and output data for the interface ele-
ment itself are the same as discussed in Sectioh 2.4 for the soil and concrete elements, but
the material properties for the interface are somewhat mOre complex. In addition to the
material prbperties required for a linear elastic material, the interface material has four
other properties, the cohesion ¢, the strain €, at which tensile stress becomes zero, the

minimum modulus E

win? and the in-plane friction angle f.

For the interface under a slab, the intefface'matedal is given the properties of the
soil immediately below the slab. The cohesion c is usually set to zero; and in that case the
strain €, is irrelevant. The ° ° um modulus E_;, is chosen to be very small compared to
‘Young’skmodulus E, but not small enough to cause an ill-conditioned stiffness matrix. In
the _concrete—concrete joints, the .interface materials are given zero cohesion and a mini-
mum modulus E_; which is about the same as the E,; under the slab. The other proper-
ties, particularly}E and f, must be chosen carefully to produce realistic results. Reasonable
‘values for E énd fcan be obtained in the lahoratory. |

Another consideration for an interface element is its normal direction. The pro-

gram presently allows three choices of the interface normal direction—x, y, and z. Each

direction has its own corresponding material routines in the program. The program was
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arranged this way so that no coordinate transformations are required to rotate the material
matrix into the global coordinate systein. New material routines could be added easily io
permit the interface normal direction to be specified by three direction cosines. However,
strésses, straihs, and the material matrices then would have to be rotated from the element
coordinate system to the global coordinate system. Each rotation requires two matrix mul-
tiplications, so the material routines would not execute as quickly as the ones presently
available in the program. Furthermore, the interface directions presently available are suf-

ficient for modeling pavement.
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4

The Beam Element

It is common in finite-element analysis of pavements to neglect the effects of the
dowels in the joints between slabs, and of the ties conhecting the slab to the shbulder and
to the adjacent lane. However, the dowels and ties do have a significant influence on the -
behavior of the pavément both when the temperature varies throughout the depth of the
siab and when the slab.is loaded near the joint. While the dowels usually carry no lohgitu-
dinal forces, they can cai‘ry large bending and ‘shear forces across the joints. The ties, on
the other hand, are ofa sm'aller‘diameter and carry Iitﬂe beﬁding or shear, but they develop
large longitudinal forces. v |

~ The dowgis and ties are modeled with three-node isoparainetric beam elements
which includé bdth flexural and shear deformation. The contribution of shear to tﬁe défor-
mation of the dowels is important because the dowels are essentially deep beams: They

carry relatively large shear forces across short spans in the joints.

4.1 Formulation
The three-node isoparametric beam element, shown in Figure 4-1, is based on an
element developed by Hinton and Owen [1]. This element formulation includes shear, as

well as flexural, deformation. Ordinary beam elements are formulated byass ~ gthat
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2
-
x=0 x

Figure 4-1. Three-Node Beam Element.

plane sections normal to the neutral axis remain plane and normal in bendmg, as in Figure

4-2. When shear becomes 1mportant that assumphon loses validity. The originally plane

- ‘neutral axis

-
-
-
-~
- -
bR,

rotated plane section

\ ‘
! original plane section

- Figure 4-2. Rotation of Plane Section in Simple Beam Theory.

and normal sections deform and rotate as shown in Figure 4—3 The rotation of a normal

plane sectlon of the usual thin beam is assumed to be
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i

0=3x

@-1)

but for a thick beam in which shear deformation is considered, the rotation is approxi-

mated by

o=%+¢ | 4-2)

in which f is an extra shear rotation. The potential energy function of such a one-dimen-

sional beam in flexure is

2 |
:z:ﬁE/(%) dx+JS¢2dx‘ | @3)

where : EI = bending stiffness,
—— = apparent curvature,
o pp !

= —C;A = shear stiffness,

O = a warping factbr,_ and
9= apprdximate shear rotation.
The beam element has three equally spaced nodes. If axial displacements are
ignored, as they are fbr the dowels, the element has twelve degrees of freedom, two trans-

lations and two rotations at each node. In this case the displacement vector is

T
q.={v1 6, w 0,1v, 0, w, 0,10V, 6, w, 9y3} (4-4)

and the interpolation functions are
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w

neutral axis

~- o
-
-
: S - - -

approximate deformation \

I

}
|
t
1
l
|
] original plane section

Figure 4-3. Deformation of Plane Section of Beam in Flexure and Shear.

N, = -%é(l—f)
N, =(1-6(1+&) 4-5)
N, =}$&1+8

The displacements and rotations are interpolated as

3 3 .
v&)=Y Ny, w(&)=3 Nw,
. =] 1-3-1 | (4-6)
o,
0,6=) N8, 0,&)=Y N, |

i=] i=]
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For this beam formulation, the strains are defined as

(96, )
ox
9, | ' |
z=,=<39y>=]3q=[};l B, B,]q | (4-7)
ox
[ 5 )
where
[ aN;, 1
0 —+ 0 0
o
—%IZ— N,l 0 0
B, = N 5 - 4-8)
0 0 0 —+
ox
oN,
0 0 —-— N,

The derivatives in B are taken with respect to the glbbal coordinate x. They are related to

‘the local coordinate x by

bkt WLk B TP Bl a | 4-9)

x 6'.’,‘8?'3§L

if the nodes are evenly spaced. The shear force and bending moment are treated as

stresses:
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(M,) [EI, 0 0 07(d6,]
: ox
o, 0 5 0 0},
1 = ' $San [ - (4-10)
Mmy| [0 o E ol%
ox
Qz J L 0 0 0 Sz_ ¢y J
or
c=Ce 4-11)

The stiffness matrix is caicuiated in the usual way,
K= j BTCBdx . 4-12)
L : .
- which, in local coordinates, becomes
! L
K= BTCBEdé 4-13)

-1

The stiffness matrix is integrated numerically even though for this element it could be

evaluated explicitly.

4.2 Tie Element
* Forthe ties, an axial translation is added to each node. The displacement vector

for the tie element is

' T
q:{v,_O?l w, 0, wiv, 0, w, 6, uwiv; 0,5 wy 6, u3}

yl

(4-14)

and its stress-strain relationship is
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MY [e. o o o o0]f9,]

ox
Qy 0 S)',' 0O 0 0 ¢,
< = EI J_23 ' -
Mp=l 00 B0 0135 @15
oo o o 5 ol
o) 0 0 0o 0 E|le

The strains for this element are given by Equation 4-7 with the B matrix extended

to include the axial d_egrees of freedom:

(0 M 4 o o]
- f\/x ".o. 0 0
B = (()h o' o M oo| 416)
| 0o 0 —3—NQ ;va_ o'v
a
0o 0 0 o St

4.3 Applications _

Two different Vversi;_o_ns of the beam elgmcﬂt' are available in the program. Firstisa
dowel element with no longitudinal Hegrees of fxéedom. Consgquently, the dowel element
does not resist opening of the joints. .The second beam element is a tie elément. It does
have a longitudinal stiffness to keep adjoining slabs tied together. For both of these beam
elements, the input data include the coordinates of the nodes, the orientation of the longi-
tudinal axis, and the material properties. The longitudinal axis must be oriented along
either the X, y,0rz direction, and the principal._axes of inertia of the beam cross-section

must be aligned with the other two axes. Execution speed is increased as a result of these
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requirements since no coordinate transformations are necessary. Furthermore, these
restrictions on the orientation of the beam elements are really not a limitation for pave-
ment analysis. If arbitrarily aligﬂed beam elements were needed, they could‘.be added to
the program easily.

The material properties to be speciﬁgd for a beam are given in Table 4-1. The first

and second axes for bending are identified in Table 4-2.

Table 4-1. Material Properties for Beam Elements.

Property _ Description
E Young’s modulus
n Poisson’s ratio -
A cross-sectional area
Il' moment of inertia about first axis
1 moment of inertia about second axis
a, warping factor for bending about first axis
a, warping factor for bending about second axis

Table 4-2. First and Second Axes for Bending of Beam Element.

Longitudinal Axis | Bending Axis 1. | ' Bending Axis 2
X Yy 4
y b4 x
z X y
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S

The Finite-Element Procedure

The finite-element program is designed to solve problems with nonlinear material
response. The mterface elements are currently the only ones usmg nonhnear material
models but the other elements could be given nonlinear charactcnsucs by a very s1mp1e
addition to the program. Solution of the nonlinear problems is accomplished by using an
iterative secant method, in which the stresses and strains at each iteration are used to deter-
mine the stiffnesses of the nonlinear materials for the next iteration. |

The output of the finite-element progr@ includes stresses, strains, and displace-
ments in the pavement slab and the soil. For pavement analysis or design, the total stfesses
and strams reported by the program are the deSired' quantities, but for comparison with
experimental data, some feferencc data corresponding to the residual stresses present at
the expeﬁmenta.l zero state must ‘Be subtracted from the oUiput quantities. Obtaining the
reference stresses and dlsplacements requires the solution of another entire problem corre- -

sponding to the expenmental reference state.

5.1 Solution Algorithm
- The first iteration of the program includes only body forces. All materials are

assumed to be under no Strcss for the purpose of calculating materia.l properties, and those
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properties are assumed to be constant. The stresses, strains, and displacements for the first
iteration are saved to disk for later reference. The second iteration applies all forces—
body, thermal, and traffic—and uses the stresses and strains from the first iteration to cal-
culate the material properties. Displacements, stresses, and strains are computed.

The third iteration again applies all of the loads. Stresses and strains from the sec-
ond iteration are used to find material properties. Again, Displacements, stresses, and
strains are computed. This process is repeated until the change in the displacement vector,
as defined below, becomes less than a specified tolerance.

2.(af -qf)
change =~ | (5-1)
PNCHS o
When the iterations have converged .t"o within the specified tolerance, the program writes

the final displacements, stresses, and strains to disk.

5.2 Reference Data

If the output results are to be compared with experimental data, it is necessary to
run a separate problem to get the stresses, strains, and displacements of the reference state.
The reference problem includes body forces and temperatures corresponding to the exper-
imental zero condition. The basic assumption of this méthod is that there exists some tem-
perature at which stresses and displacements are zero. The problem that is solvedisa
temperature change from that rest temperature to the température of interést. Then the ref-
erence problem is a temperature change from the rest temperature to the temperature at

which the experimental data was zeroed.




29

6

Verification of the Program

The finite-element program was used to solve several highway pavement prob- .>
lems. Each problém con_sisted of a concrete pavement slab, a base layer, and a subgrade
layer. A layer of interface elements separated the concrete from the base to model con-
crete—soil separation and friction. The slab was connected by dowels to other slabs -oﬁ two
sides, and by ties to another slab on one side. Figure 6-1 shows a typical slab with dow-
elled end joints and a tied side. In some problems, a tied shoulder was added, as in Figure
6-2. In both dowelled and tied slab—slab joints, interface elements were used between
‘slabs to simulate load transfer across the joint lan_d to permit compression but to prevent

tension.

6.1 Finite-Element Mwh .

Figure 6-3 shows a typical finite-element mesh cross section in the x—z plane.
Five layers of elements can be seen: two layers of concrete elements, one layer of interface
elements, one layer of base elements, and two layers of subgrade elements. Figure 6-4
shows the y—z plane cross section, and Figure 6-5 shows the top view of the x—y plane.
Note that for most of the problems that were solved, the concrete shoulder was not tied to -

the main slab.
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Tie, 3/8 in dia.

Adjacent Lane

252 in
144 in - l
- 12in
: Concrete Slab »
- Dowel, '
¥ : - lindia. )

y

Figure 6-1. A slab with dowelled end joints, one tied edge, and no
shoulder.
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Tie, 3/8 in dia.

Adjacent Lane

- 252in —

144in l
| S 12in

‘ ’Concrete".S'labv -
Dowel, . o R A

96in Tied Shoulder

y

Figure 6-2. A slab with dowelled end joints and tied edges.
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-160

Concrete Shoulder ' Concrete Pavement

Interface
Steel Tie / Steel Dowel

Figure 6-3. Mesh cross-section in x—z plane.




Concrete

Steel Tie Interface Steel Dowel Interface

Figure 6-4. Mesh cross-section in y—z plane.
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‘ Steel Dowel
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126 h
117
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Interface
\

75

45
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-96
-66
42
114
126
138
144
1445
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msovafe 8RS8

Figure 6-5. Mesh cross-section in x—y plane.
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6.2 Material Properties

The sample problems were run with various values of the material parafnetem and
for both positive and negative temperature gradients.- Table 6-1 gives the material param-
eters used for the sample problems. The positive-gradient tcniperatures are shown m
Table 6-2, and the temperatures for the negatiize gradient are given in Table 6-3. The most

‘important of the material properties are discussed in the following sections.

6.2.1 Concrete. The elastic modulus of the concrete pavement layer has a predictable
effect on the vertical displacements in the case of a positive temperature gradient; a larger
modulus generally produces larger displacl:ementsv in both the positive and negative direc-
tions, as shown in Figure 6-6. For the negativg temperature gradient, the effect of the con-

crete modulus is less pfonounced and, as can be seen in Figure 6-7, less predictable.

6.2.2 Sﬁbgfade. ‘The elastic modulus of the subgrade controls the sinking of the pave-

ment into the soil when part of the concrete layer loses contact with thé base. For the pos-
itive temperature gradient, a weaker soil allows the edges of the slab to sink deeper and the
center to rise higher, as Figure 6-8 shows. Figure 6-9 shows that with a negative tempera-
ture gradient, the weaker soil permits the slab to sink more and results in an increased con-

tact area between the slab and the base.

6.2.3 Concrete—Concrete Interface. The moduius of the concrete—concrete interface gov-
ems\ﬂle normal stiffness of the thin interface elements under compression. It also deter-
mines the shear stiffness if the shear stress is below the allowable maximum. Figure 6-10
shows the results of reducing the concrete—concrete interface stiffness by a factor of ten
under a positive temperature gradient. Figure {67.1 1 shows the corresponding data for a

negative temperature gradient.
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Table 6-1. Material properties used in the test problems. When more than
one value is listed, the value used for most problems is given in bold type.

Material Parameter Description Value(s) Units
E, Elastic modulus 3000, 4000, 5000 ksi
_ v, Poisson ratio 0.25 1
_concrete
Y. Weight density 0.085 1b/in3
o, Thermal strain coefficient | 5.5 me/°F
E, Elastic modulus 15, 30, 50 ksi
base
Vy Poisson ratio 03 1
E, Elastic modulus 510,15 - ksi
-subgrade . -
. Poisson ratio 03 1
Ey Elastic modulus 30000 ksi
dowel Vg Poisson ratio 03 1
d, Diameter 0.5,10,15 in
E, Elastic modulus 30000 ksi
tie v, Poisson ratio {03 “ 1
' A Diameter 3/8, 5/8 in
B Elastic modulus 400, 4000 ksi
Ve Poisson ratio 0.15,0.2,03 1
concrete— '
concrete E, i Minimum elastic modulus -{ 10.0 . psi
interface
tang Tangent of friction angle 1.0, 10.0 1
t.. Thickness 0.1,0.5,1.0 in
E., Elastic modulus 50, 500, 1000 ksi
, Ve, Poisson ratio 0.15,03,04 1
concrete—
soil E,uin Minimum elastic modulus | 10.0 psi
interface — :
tang_, Tangent of friction angle | 1.0, 10.0 1
ts Thickness 0.5,1.0,2.0 in




Table 6-2. Temperature profile of pavement
with positive gradient (warmer top).

Depth, | Temperature
in | change, °F
0.0 ~-10.4
25 -154
5.0 -19.1
15 -20.9
10.0 -22.1

Table 6-3. Temperature profile of pavement
with negative gradient (cooler top).

Depth, | Temperature
in change, °F
0.0 -31.3
25 ~27.6
50 -25.8
15| -239
100 229

The small effect of the friction angle of the interface can be seen in Figure 6-12.

The friction angle makes no discernible difference for the pqsitivetcmperature gradient.

6.2.4 Concrete-Soil Interface. Changes in the friction anglé of the concrete—soil inter-
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face resulted in relatively minor changes in the displacements of the concrete layer. Fig-

ure 6-13 shows the positive-gradient case, and Figure 6-14 shows the negative-gradient

case.

For the positive temperature gradient, a thicker concrete—soil interface gave a -

smaller contact ar_eé; see Figure 6-15. Figure 6-16 shows a similar result for the negative

gradient. In both the positive- and negative-gradient cases, the change in interface thick-
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Figure 6-6. Vertical diSplacemenfs of 21-foot slab for a_positive
. tempe ~ gradient and three elastic moduli of the concrete.
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Figure 6-9. Vertical displacements of 21-foot slab for a negative
temperature gradient and three elastic moduli of the subgrade.



42

Vertical displacement, inch

0.006
0.004
0.002
0.000
-0.002
-0.004
-0.006
-0.008
-0.010
-0.012
-0.014

Vertical displacement, inch

0.006

ol EEETES TS T ST R N R A N R U

120 9% T2 48 24 0 4 48 T

96

Distance from center of slab along longitudinal centerline, inches

o l ) I 1 I‘ | S 1 | | l 1 I |

72 48 24 .0 24 48 T2
Distance from ceater of slab along diagonal, inches

0.006
0.004
0.002
0.000
-0.002
-0.004
-0.006
-0.008
-0.010
-0.012

-0.014 y b b ' e
-7 48 24 0 24 48 2

TNNANNE

TII[111II

- Vertical displacement, inch

[ ]

E, . ksi
e 400
—— 4000

" Distance from center of slab along transverse centerline, inches

Figure 6-10. Vertical displacements of 21-foot slab for a positive
temperature g:adignt and two elastic moduli of the concrete—concrete

_ interface.. -



43

0.014
0.012

p=
-
po—
-
—

N

1

Vertical displacement, inch

Vertical displacement, inch

0.014
0.012
0.010

temperature gradient and two

0.010
0.008

telilil

—
| I

1

L |

Ll g B ar

]

I}

120 96

72

4

0

24 .

48

72

96

Distance from center of slab along longitudinal centerline, inches

~g— Shoulder

S

-”

(1

i

Vertical displacement, inch

- 24

0

4

48

72

Distance from center-of slab along diagonal, inches

0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000

!
%

3
'

-

-4

—

"SR EERENE AN

l1/l|lll|lll|l

48

24

0

2.

48

72

E, ksi
400
— 4000

Distance from center of slab along transverse centerline, inches

Figure 6-11. Vertical displacements of 21-foot slab for a negative
elastic moduli of the concrete~concrete
‘interface.



Vertical displacement, inch

0.014
0.012
0.010
0.008
0.006 -

T
—
—
p=

p—

1

RN RN R
b la bl

0.000 ‘
-0.002 \..

_0‘004_lllllllll
120 96 72 48 4 0 24 48 iy 96 120

Distance from center of slab along longitudinal centerline, inches

" Vertical displacement, inch

~¢— Shouider Adjacent Lar

1
1
g
:
'

0014 —————
0.012
0.010

—
-
-

I’ILIIIIIIIIII

Vertical displacement, inch
o

: ~ S T B
T2 - 48 24 0 24 48 72
Distance from center of slab along transverse centerline, inches

Figure 6-12. Vertical displacements of 21-foot slab for a negative
temperature gradient and two friction angles of the concrete—concrete
o interfacg.’, _ -




Vertical displacement, inch

45

ol L LA L B B By s B L s e ey
5 £
g —
e
s -
B
3 -0.008 |- 3
3 ook :
g -0.010 — —
g -0.012 |- —
Y15 7/ ot AN NN EI S S [T DI AT Y T NV
120 96 72 48 24 0 24 48 iy 96 120
Distance from center of slab along longitudinal centerline, inchcs
~g—- Shoulder : Adjacent Lane ~—p»
O'm6 N 1 F T T lil T ‘ 1 —l 1 1 I L ] 1 ] 1 l LI I 1 =
0.004 — S— : —
0002 |~ —
0.000
-0.002
-0.004
-0.006
-0.008 -]
-0.010 3
-0.012 |~ v —
_0.014bljlIllllI[L-JllJl[lllll-{
14 120 96 72 48 24 0 24 48 72 9 120 144
Distance from center of slab along diagonal, inches
- ~— Shoulder Adjacent Lane —»-
g 0004 - .
& 0002 |- e —
< 0.000 ]
g n 4 tan ¢
g -0002 Z/ — ceee 10
g -0.004 — :
'5 -0.006 [ 4 w0
L. r_ -
wy -0.008 — -
g -0.010 — —
> '0.012 — . -
-0.014 I B T 1 ..I ]
N 48 24 0 A 48 72

Distance from center of slab along transverse centerline, inches

' Figure 6-13. Vertical displacements of 21-foot slab for a positive
temperature gradient and two friction angles of the concrete—soil interface,



46

Vertical displacement, inch

slot ol 1o

Vertical displacement, inch

120 96 72 48 24 0 24 48 72 9% 120

l-.l--l-..-.l.-r-l | 1

48 24 0 24 48 72
" Distance from center of slab along diagonal, inches

!
g
8
3
$

0.014
0.012
0.010
0.008
0.006
0.004

po—
—
-

tan ¢
ceee 10
—100

lllljllllllll

g 8
/VV'I'I'lrI'I'

[T s el A
72 48 24 0 24 48 A ”
Distance from center of slab along transverse centerline, inches

|

Vertical displacement, inch

b ¢
3
T‘II

§

Figure 6-14. Vertical displacements of 21-foot slab for a negative
temperature gradient and two friction angles of the concrete—soil interface.



47

ness from one inch to two inches produced a much greater change in the displacements

than was caused by the change from the half-inch to the one-inch interface thickness.

6.2.5 Dowels and Ties. Different dowel diameters made almost no difference in the dis- :
placements. The tie diameter, on the other hand, had a significant influence on the nega-

tive-gradient displacements, as Figure 6-17 shows.

6.2.6 Shoulder. In general, the addition of a tied shoulder to the mesh reduced the magni-
tude of the displacements along the shoulder édge of the slab and increased their magni-
tude along the opposite edge. Figure 6-18 shows the results for the positive temperature

gradient, and Figure 6-19 shows the results for the hégative gradient.

6.2.7 Average Temperature Chaﬁge. Figure 6-20 shows the displacements fdr five differ-
ent average temperature changes with the Sarﬁe positive temperature gradient. Figure 6-21
shows the corresponding curves for the negative temperature gradient. The cﬁrvés for the
two positive temperature changes are similai in both figures, as ‘a.lrc the curves for the two.
negative temperature chénges. The major change in the displacements occurs in the tran-
sition from positive to qégative average temperatures. This can be understood by recalling
that the concrete~concrete interface elements lose their stiffness in tension. Therefore the
joints have very small stiffness when the average temperature changé is negative. The
opposite is true when the average temperature change is positive.‘ The joints are in com-

pression, and the edges of the slabs are not as free to move.

6.3 Experimental Data |

Figure 6-22 shows vertical dlsplacements along the centerline and along the end
joint as well as longltudmal stresses along the centerline for all of the positive-gradient
ﬁmte-element problems correspondmg to all of the material properties givenin Table 6-1.

The graphs also show some experimental data. The graphs for the negative temperature
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Figure 6-20. Vertical displacements of 21-foot slab for a positive
temperature gradient and five average temperature changes. ‘



>4

Vertical displacement, inch

Vertical displacement, inch

0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000
-0.002

0.014 T
0.012

ASEREREE

48 0 72 96 120
Distance from center of slab along longitudinal centerline, inches

o ') NP A ST ¥ -
- OHOUWUCL . . AUjarciil LALIC =g

144 120 .96 72 48 24 0 A4 48 72 96 120

Distance from center of slab along diagonal, inches

~«¢— Shoulder Adjacent Lane —#»

0‘014 | ) ] I l I 1 l I [ ' .j
5 0012 — -
£ 0010 |~ -~
H] . ] o
§ oosp - AT, °F
§ 06 q
T 0004 A - — -2
B 0.002 \ — -= 0
'S NS ’ —_—
2 0.000 £ 20
E 20.002 == 40
- -0.004 L

72 48 24 0 4 48 72
Distance from center of slab along transverse centerline, inches

Figure 6-21. Vertical displacements of 21-foot slab for a negative
. temperature gradient and five average temperature changes.



55

gradient are in Figure 6-23. In both casés the displacements agree fairly well, but the
stresses do not match as closely. Several factors probably contribute to the discrepancy,
possibly ‘including an uncertainty in the depth of the strain. gages, nonuniform support
under the slab, complex behavior of the concrete-concrete interfaces, and, of course, non-

linear material behavior.

6.4 Axle Loads

Problems were run with axle loads at the end joint and at the centerline. In each
problem, the axle load was 15 tons and was distributed over two 216-square-inch areas
centered at 36 and 120 inches from the shoulder. Because of the symmetry of the finite-
element mesh, these problems actually represent a situation in which the same load is

present on the adjacent lane and the loads are repeated at the center of each slab or at each

end joint. Figure 6-24 shows the vertical displacemenfs of a slab loaded at its center with

and without a positive temperature gradient. The stresses along the transverse centerline

aré shown-in Figure 6-25. The displacements of a slab loaded at the joint are shown in

Figure 6-26, and the stresses are in Figure 6-27. These problems were run with a negative
\

temperature gradient.
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Figure 6-24. Vertical displacements of 21-foot slab with 15-ton axle load
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‘Figure 6-25. Longitudinal stresses along transverse centerline of 21-foot
slab with 15-ton axle load at center.
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7

Conclusion

71 S ~ary _

A three-dimensional fmite-elcmént prdéram has been described Which was devel-
oped to model rigid pavement under static loads and therinal gradients. Features of the
program include the ability to model dowel bars, pavement joints, and concrete—soil inter-
faces. The program which has.becn described has proved to be capable of predicting accu-
rately the displacements of é rigid pavement slab under a thermal gradient loading.
Predicted stresses have differed from experimental data by a greater margin, but they have
been in at least reasonable agreement. Better results probably could be obtained by
extending the program to model nonlinear concrete behavior, .pavement cracking, and steel

reinforcement.

7.2 Recommendations for Future Investigation

Below are listed several improvements and additions which could be made to the
program. They are listed in estimated order of effort (both human aﬁd computational)
required for implementation. .

1. Add a nonlinear elastic concrete model

2. Add a concrete reinforcement model.
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Add a nonlinear soil model with properties dependent on moisture.
Add an inelastic concrete crackiﬁg model. |

Implement a viscoelastic model for asphalt pavement.

= Y IV

Modify the program to model dynamic response to impulse loads, and compare
data from a falling-weight deflectometer test.

7. Add the ability to model moving axle loads.
The last few of these would require much greater computational power than was available

for this study.

to the program are the following:

1. Investigate the region of the slab near the joint with a very fine meéh. The con-

 crete-dowel bonding could bé simulated with thin interface elements, and the
dowels could be represenied by the same twenty;ﬁode hexahedral élements

| presently used for concrete and soil.

2. Attempt to make an experimental‘ determination of the residual stresses in a
‘slab. The residual stresses could be input to thé program as initial stresses. If
the residual stresses were significant, the result would likely be improved agree-

ment between the predicted and experimental stresses and displacements.
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